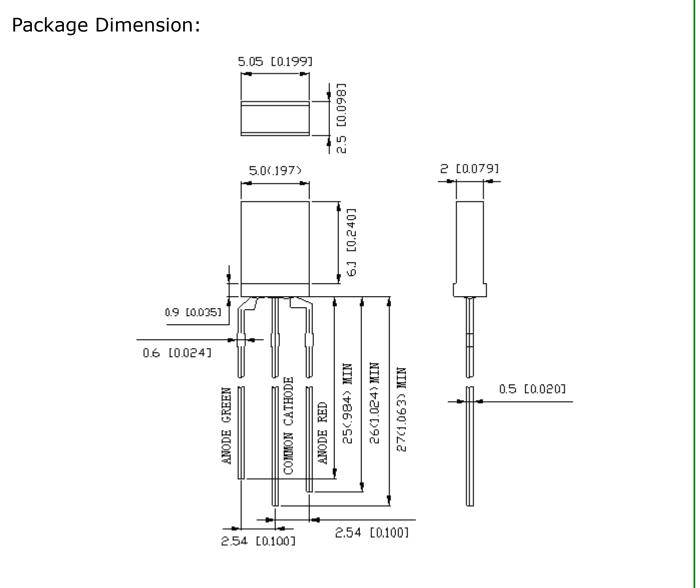


2×5mm Bi-Color With Common Cathode Type Hyper Red & Super Yellow Green LED Technical Data Sheet

Part No.: 259VUGM1G-V11A-2B

Features:

Hyper Red and Super Yellow Green chips are matched for uniform light output.With Common Cathode.Long life solid state reliability.Low power consumption.I.C. compatible.The product itself will remain within RoHS complaint Version.


Descriptions:

The lamp contain two integral chips and is available bicolor. The Hyper Red and Super Yellow Green light is emitted by diodes of AlInGaP and AlInGaP respectively. White Diffused lens color.

Applications:

TV set. Monitor. Telephone. Computer. Circuit board.

Part No.	Chip Material		Lens Color	Source Color
	V	AlInGaP		Hyper Red
259VUGM1G-V11A-2B	UG	AlInGaP	White Diffused	Super Yellow Green

Notes:

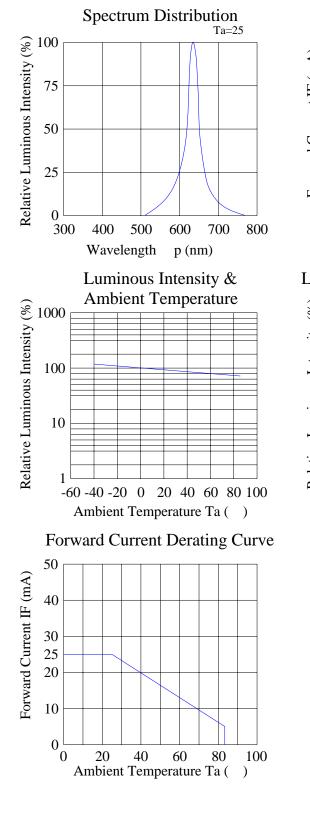
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.00mm (.039") max.
- 4. Specifications are subject to change without notice.

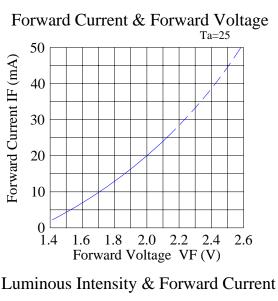
Absolute Maximum Ratings at Ta=25

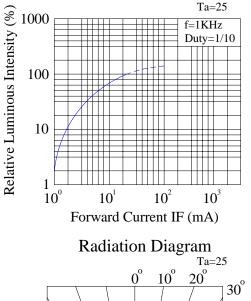
Absolute Maximum Ratings at 1a–25						
Parameters		Symbol	Max.	Unit		
Deven Dississation	Hyper Red	PD	65	mW		
Power Dissipation	Super Yellow Green	PD	65			
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)		IFP	100	mA		
Hyper Red Chip Forward Current		IF	25	mA		
Super Yellow Green Chip Forward Current		IF	25	mA		
Reverse Voltage		VR	5	V		
Operating Temperature Range		Topr	-40 to +85			
Storage Temperature Range		Tstg	-40 to +100			
Lead Soldering Temperature [4mm (.157") From Body]		Tsld	260 for 5 Seconds			

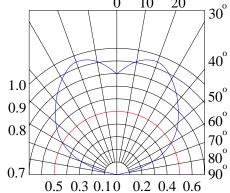
Electrical Optical Characteristics at Ta=25							
Parameters	Symbol	Emitting Color	Min.	Тур.	Max.	Unit	Test Condition
		Hyper Red	70	90		mcd	IF=20mA (Note 1)
Luminous Intensity *	IV	Super Yellow Green	20	30			
		Hyper Red		120			IF=20mA (Note 2)
Viewing Angle *	20 _{1/2}	Super Yellow Green		120		Deg	
Peak Emission		Hyper Red		632		nm	IF=20mA
Wavelength	λр	Super Yellow Green		575			
Dominant	λd	Hyper Red		624		nm	IF=20mA (Note 3)
Wavelength		Super Yellow Green		573			
Creatural Line		Hyper Red		20		nm	IF=20mA
Spectral Line Half-Width	λ	Super Yellow Green		20			
Forward Voltage	VF	Hyper Red	1.60	2.00	2.60	V	IF=20mA
		Super Yellow Green	1.60	2.00	2.60		
		Hyper Red			10	μA	V _R =5V
Reverse Current	IR	Super Yellow Green			10		

Notes:

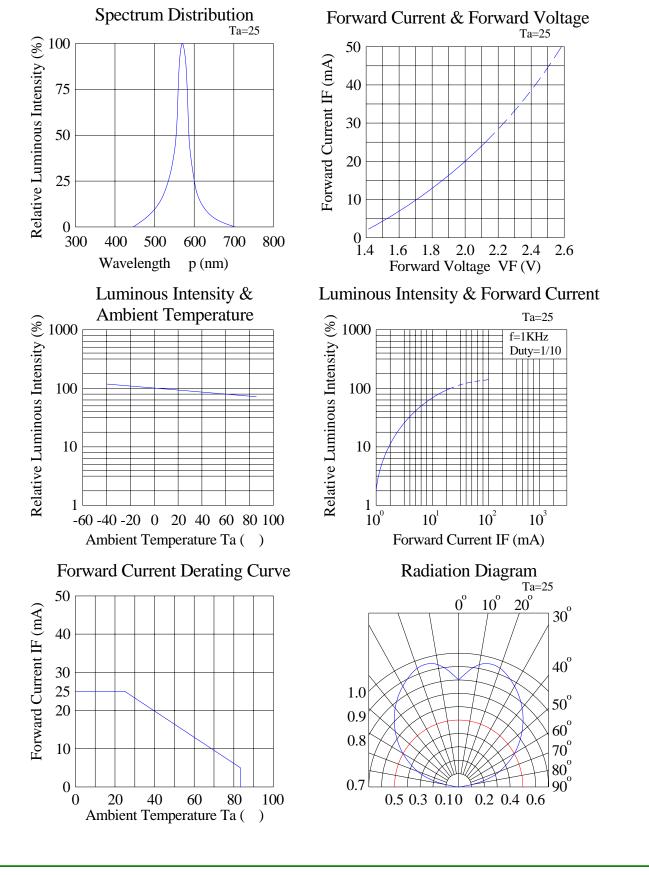

1. Luminous Intensity Measurement allowance is \pm 10%.


2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.


3. The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.



Typical Electrical / Optical Characteristics Curves (25 Ambient Temperature Unless Otherwise Noted) Red:



Spec No.: A010 X400Rev No.: V.3Approved: ZHOUChecked: WuLucky Light Electronics Co., Ltd.

Date: Jun./02/2010 Page: 6 OF 9 Drawn: Zhang http://www.luckylightled.com

Yellow Green:

Spec No.: A010 X400Rev No.: V.3Approved: ZHOUChecked: WuLucky Light Electronics Co., Ltd.

Date: Jun./02/2010 Page: 7 OF 9 Drawn: Zhang http://www.luckylightled.com

Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:

Confidence level: 90%.

LTPD: 10%.

1) Test Items and Results:

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat	JEITA ED-4701 300 302	Tsld=260±5 , 10sec 3mm from the base of the epoxy bulb	1 time	0/100
Solder ability	JEITA ED-4701 300 303	Tsld=235±5 , 5sec(using flux)	1time over 95%	0/100
Thermal Shock	JEITA ED-4701 300 307	0 ~100 15sec, 15sec	100 cycles	0/100
Temperature Cycle	JEITA ED-4701 100 105	-40 ~25 ~100 ~25 30min,5min,30min,5min	100 cycles	0/100
Moisture Resistance Cycle	JEITA ED-4701 200 203	25 ~65 ~-10 90%RH 24hrs/1cycle	10 cycles	0/100
High Temperature Storage	JEITA ED-4701 200 201	Ta=100	1000hrs	0/100
Terminal Strength (Pull test)	JEITA ED-4701 400 401	Load 10N (1kgf) 10±1sec	No noticeable damage	0/100
Terminal Strength (bending test)	JEITA ED-4701 400 401	Load 5N (0.5kgf) 0°~90°~0° bend 2 times	No noticeable damage	0/100
Temperature Humidity Storage	JEITA ED-4701 100 103	Ta=60 , RH=90%	1000hrs	0/100
Low Temperature Storage	JEITA ED-4701 200 202	Ta=-40	1000hrs	0/100
Steady State Operating Life		Ta=25 , IF=30mA	1000hrs	0/100
Steady State Operating Life of High Humidity Heat		Ta=60 , RH=90%, IF=30mA	500hrs	0/100
Choice of various viewing angles		Ta=-30 , IF=20mA	1000hrs	0/100

2) Criteria for Judging the Damage:

Itom	Symbol	Test Conditions	Criteria for Judgment		
Item	Symbol	Test Conditions	Min	Max	
Forward Voltage	VF	IF=20mA		F.V.*)×1.1	
Reverse Current	IR	VR=5V		F.V.*)×2.0	
Luminous Intensity	IV	IF=20mA	F.V.*)×0.7		

*) F.V.: First Value.

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

2.1 Do not open moisture proof bag before the products are ready to use.

2.2 Before opening the package, the LEDs should be kept at 30 or less and 80%RH or less.

2.3 The LEDs should be used within a year.

2.4 After opening the package, the LEDs should be kept at 30 or less and 60%RH or less.

2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260 for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3mm clearance from the base of the lens to the soldering point.

To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

Solde	ring Iron	Wave Soldering		
Temperature Soldering Time	300 Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat Time Solder Wave Soldering Time	100 Max. 60 sec. Max. 260 Max. 5 sec. Max.	

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.